Electronic, Magnetic and Spin-polarized Transport Properties of the Zigzag-Zigzag Penta-graphene Nanoribbon
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/15843Keywords:
Electronic, Magnetic, Spin-polarized transport, Zigzag-zigzag penta-graphene nanoribbon.Abstract
Electronic, magnetic and spin-polarized transport properties of the zigzag-zigzag pentagraphene nanoribbon are investigated theoretically within the framework of density functional theory combined with non-equilibrium Green’s function formalism. It is found that the spinunpolarized ZZ-PGNR behaves as metal. However, the spin-polarized ZZ-PGNRs show to be the magnetic semiconductor properties. More importantly, for the ZZ-PGNRs based device, the spin-filtering effect occurs strongly near Fermi level. Our findings suggest that ZZ-PGNRs might hold a significant promise for developing spintronic devices.
Downloads
References
[1] K. Novoselov, Reviews of Modern Physics 83 (2011) 837.
[2] J. Phiri, P. Gane and T. C. Maloney, Materials Science and Engineering: B 215 (2017) 9.
[3] A. K. Geim, science 324 (2009) 1530.
[4] N. T. Tien, B. T. Hoc, N. V. Ut and L. Tuan, Communications in Physics 28 (2018) 201.
[5] N. T. Tien, V. T. Phuc and R. Ahuja, AIP Advances 8 (2018) 085123.
[6] S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe and P. Jena, Proceedings of the National Academy of Sciences
of the United States of America 112 (2015) .
[7] M. Yagmurcukardes, H. Sahin, J. Kang, E. Torun, F. Peeters and R. Senger, Journal of Applied Physics 118 (2015)
[8] T. Stauber, J. I. Beltran and J. Schliemann, ´ Scientific reports 6 (2016) 1.
[9] P. Yuan, Z. Zhang, Z. Fan and M. Qiu, Physical Chemistry Chemical Physics 19 (2017) 9528.
[10] Y. Li, P. Yuan, Z. Fan and Z. Zhang, Organic Electronics 59 (2018) 306.
[11] N. T. Tien, P. T. B. Thao, V. T. Phuc and R. Ahuja, Physica E: Low-dimensional Systems and Nanostructures 114
(2019) 113572.
[12] N. T. Tien, P. T. B. Thao, V. T. Phuc and R. Ahuja, Journal of Physics and Chemistry of Solids (2020) 109528.
[13] T. Y. Mi, D. M. Triet and N. T. Tien, Physics Open 2 (2020) 100014.
[14] V. V. On, L. N. Thanh and N. T. Tien, Philosophical Magazine (2020) 1.
[15] D. Wang, Z. Zhang, Z. Zhu and B. Liang, Scientific reports 4 (2014) 7587.
[16] B. Dlubak, M.-B. Martin, C. Deranlot, B. Servet, S. Xavier, R. Mattana, M. Sprinkle, C. Berger, W. A. De Heer, F. Petroff et al., Nature Physics 8 (2012) 557.
[17] M. Zeng, L. Shen, M. Zhou, C. Zhang, Y. Feng et al., Physical Review B 83 (2011) 115427.
[18] J. Zeng, K.-Q. Chen, J. He, X.-J. Zhang and C. Q. Sun, The Journal of Physical Chemistry C 115 (2011) 25072.
[19] J. Taylor, H. Guo and J. Wang, Physical Review B 63 (2001) 245407.
[20] S. Datta, Electronic transport in mesoscopic systems, Cambridge university press, 1997.
[21] H.-L. Zhang, L. Sun and J.-N. Han, Acta Physica Sinica 66246101.
[22] Z. Yu, D. Wang, Z. Zhu and Z. Zhang, Physical Chemistry Chemical Physics 17 (2015) 24020.
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


