Analysis of Temperature-dependent Extended X-ray Absorption Fine Structure Oscillation of Distorted Crystalline Cadmium
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/16890Keywords:
crystalline cadmium, anharmonic correlated Debye model, Debye-Waller factor, EXAFS oscillationAbstract
In this paper, the temperature-dependent extended X-ray absorption fine structure (EXAFS) of distorted crystalline cadmium has been analyzed using an efficient calculation-model. The analysis procedure is based on evaluating the influence of temperature on the phase shift and amplitude reduction of EXAFS oscillation that is expressed in terms of the EXAFS Debye-Waller factor. The anharmonic EXAFS cumulants are calculated by expanding the anharmonic correlated Debye model based on the anharmonic effective potential that depends on the structural characteristics of distorted crystalline cadmium. The numerical results satisfy well with those obtained using the experimental data and other models at various temperatures. The obtained results indicate that this theoretical model is useful for calculating and analyzing the experimental EXAFS data of distorted crystalline metals.
Downloads
References
S. Shikata, K. Yamaguchi, A. Fujiwara, Y. Tamenori, K. Tsuruta, T. Yamada, S.S. Nicley, K. Haenen, S. Koizumi, X-ray absorption near edge structure and extended X-ray absorption fine structure studies of P doped (111) diamond, Diam. Relat. Mater. 105 (2020) 107769.
DOI: https://doi.org/10.1016/j.diamond.2020.107769
P. Fornasini, R. Grisenti, M. Dapiaggi, and G. Agostini, Local structural distortions in SnTe investigated by EXAFS, J. Phys.: Condens. Matter 33 (2021) 295404.
DOI: https://doi.org/10.1088/1361-648X/ac0082
T.S. Tien, Temperature-Dependent EXAFS Debye–Waller Factor of Distorted HCP Crystals, J. Phys. Soc. Jpn. 91 (2022) 054703.
DOI: https://doi.org/10.7566/JPSJ.91.054703
T. Yokoyama, K. Kobayashi, T. Ohta, and A. Ugawa, Anharmonic interatomic potentials of diatomic and linear triatomic molecules studied by extended x-ray-absorption fine structure, Phys. Rev. B 53 (1996) 6111.
DOI: https://doi.org/10.1103/PhysRevB.53.6111
T. S. Tien, Effect of the non-ideal axial ratio c/a on anharmonic EXAFS oscillation of h.c.p. crystals, J. Synchrotron Rad. 28 (2021) 1544.
DOI: https://doi.org/10.1107/S1600577521007256
J. J. Rehr, F. D. Vila, J. J. Kas, N. Y. Hirshberg, K. Kowalski, and B. Peng, Equation of motion coupled-cluster cumulant approach for intrinsic losses in x-ray spectra, J. Chem. Phys. 152 (2020).
DOI: https://doi.org/10.1063/5.0004865
T. Yokoyama and S. Chaveanghong, Anharmonicity in elastic constants and extended x-ray-absorption fine structure cumulants, Phys. Rev. Materials 3 (2019) 033607.
DOI: https://doi.org/10.1103/PhysRevMaterials.3.033607
R. B. Greegor and F. W. Lytle, Extended x-ray absorption fine structure determination of thermal disorder in Cu: Comparison of theory and experiment, Phys. Rev. B 20 (1979) 4902.
DOI: https://doi.org/10.1103/PhysRevB.20.4902
G. Bunker, Application of the ratio method of EXAFS analysis to disordered systems, Nucl. Instrum. Methods 207 (1983) 437.
DOI: https://doi.org/10.1016/0167-5087(83)90655-5
J. J. Rehr and R. C. Albers, Theoretical approaches to x-ray absorption fine structure, Rev. Mod. Phys. 72 (2000) 621.
DOI: https://doi.org/10.1103/RevModPhys.72.621
M. Newville, EXAFS analysis using FEFF and FEFFIT, J. Synchrotron Rad. 8 (2001) 96.
DOI: https://doi.org/10.1107/S0909049500016290
M. Newville, B. Ravel, D. Haskel, J. J. Rehr, E. A. Stern, and Y. Yacoby, Analysis of multiple-scattering XAFS data using theoretical standards, Physica B 208-209 (1995)154.
DOI: https://doi.org/10.1016/0921-4526(94)00655-F
A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure, Phys. Rev. B 58 (1998).
DOI: https://doi.org/10.1103/PhysRevB.58.7565
S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, Multiple-scattering calculations of x-ray-absorption spectra, Phys. Rev. B 52 (1995) 2995.
DOI: https://doi.org/10.1103/PhysRevB.52.2995
J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, Theoretical x-ray absorption fine structure standards, J. Am. Chem. Soc. 113 (1991) 5135.
DOI: https://doi.org/10.1021/ja00014a001
T. S. Tien, Investigation of the anharmonic EXAFS oscillation of distorted HCP crystals based on extending quantum anharmonic correlated Einstein model, Jpn. J. Appl. Phys. 60 (2021) 112001.
DOI: https://doi.org/10.35848/1347-4065/ac21b3
G. Buxbaum and G. Pfaff, Industrial Inorganic Pigments, 3rd ed., Wiley-VCH, New York (2005).
M. Hou, L. Li,, and M. Zhuang, Research on application mechanism of cadmium in new energy vehicle charging group, IOP Conf. Ser.: Earth Environ. Sci. 227 (2019) 052046.
DOI: https://doi.org/10.1088/1755-1315/227/5/052046
A. M. Kadim, Applications of Cadmium Telluride (CdTe) in Nanotechnology, IntechOpen, London (2019).
N. E. Galushkin, N. N. Yazvinskaya, and D. N. Galushkin, Nickel-cadmium batteries with pocket electrodes as hydrogen energy storage units of high-capacity, Journal of Energy Storage 39 (2021) 102597.
DOI: https://doi.org/10.1016/j.est.2021.102597
N. V. Hung, L. H. Hung, T. S. Tien, and R. R. Frahm, Anharmonic effective potential, local force constant and EXAFS of HCP crystals: Theory and comparison to experiment, Int. J. Mod. Phys. B 22 (2008) 5155.
DOI: https://doi.org/10.1142/S0217979208049285
N. V. Hung, T. S. Tien, N. B. Duc, and D. Q. Vuong, High-order expanded XAFS Debye Waller factors of HCP crystals based on classical anharmonic correlated Einstein model, Mod. Phys. Lett. B 28 (2014) 1450174.
DOI: https://doi.org/10.1142/S0217984914501747
N. V. Hung, N. B. Trung, and B. Kirchner, Anharmonic correlated Debye model Debye–Waller factors, Physica B 405 (2010) 2519.
DOI: https://doi.org/10.1016/j.physb.2010.03.013
N. B. Duc, N. V. Hung, H. D. Khoa, D. Q. Vuong, and T. S. Tien, Thermodynamic Properties and Anharmonic Effects in XAFS Based on Anharmonic Correlated Debye Model Debye–Waller Factors, Adv. Mater. Sci. Eng. 2018 (2018) 3263170.
DOI: https://doi.org/10.1155/2018/3263170
N. B. Duc, V. Q. Tho, T. S. Tien, D. Q. Khoa, and H. K. Hieu, Pressure and temperature dependence of EXAFS Debye-Waller factor of platinum, Radiat. Phys. Chem. 149 (2018) 61.
DOI: https://doi.org/10.1016/j.radphyschem.2018.03.017
T. S. Tien, Analysis of EXAFS oscillation of monocrystalline diamond-semiconductors using anharmonic correlated Debye model, Eur. Phys. J. Plus. 136 (2021) 539.
DOI: https://doi.org/10.1140/epjp/s13360-021-01378-z
E. D. Crozier, J. J. Rehr, and R. Ingalls, X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, XANES, edited by D. C. Koningsberger and R. Prins, Chap. 9, Wiley, New York (1988).
T. S. Tien, Advances in studies of the temperature dependence of the EXAFS amplitude and phase of FCC crystals, J. Phys. D: Appl. Phys. 53 (2020) 315303.
DOI: https://doi.org/10.1088/1361-6463/ab8249
N. V. Hung, T. S. Tien, and L. H. Hung, High-order anharmonic effective potentials and EXAFS cumulants of FCC crystals calculated from a Morse interaction potential, Communications in Physics 18 (2008) 75.
L. Tröger, T. Yokoyama, D. Arvanitis, T. Lederer, M. Tischer, and K. Baberschke, Determination of bond lengths, atomic mean-square relative displacements, and local thermal expansion by means of soft-x-ray photoabsorption, Phys. Rev. B 49 (1994) 888.
DOI: https://doi.org/10.1103/PhysRevB.49.888
A. Sanson, On the neglecting of higher-order cumulants in EXAFS data analysis, J. Synchrotron Radiat. 16 (2009) 864.
DOI: https://doi.org/10.1107/S0909049509037716
P. Fornasini, R. Grisenti, M. Dapiaggi, G. Agostini, and T. Miyanaga, Nearest-neighbour distribution of distances in crystals from extended X-ray absorption fine structure, J. Chem. Phys. 147 (2017) 044503.
DOI: https://doi.org/10.1063/1.4995435
P. M. Morse, Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels, Phys. Rev. 34 (1929) 57.
DOI: https://doi.org/10.1103/PhysRev.34.57
L. A. Girifalco and V. G. Weizer, Application of the Morse Potential Function to Cubic Metals, Phys. Rev. 114 (1959) 687.
DOI: https://doi.org/10.1103/PhysRev.114.687
N. V. Hung and J. J. Rehr, Anharmonic correlated Einstein-model Debye-Waller factors, Phys. Rev. B 56 (1997) 43.
DOI: https://doi.org/10.1103/PhysRevB.56.43
P. Enghag, Encyclopedia of the elements: Technical data, history, processing, applications, Wiley-VCH, Weinheim (2004).
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


