Design of hetero-nanojunction of RGO/\(\alpha\)-Fe\(_2\)O\(_3\) nanofibers for ethanol gas sensor
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/17513Keywords:
RGO, electrospinning, RGO-loaded \(\alpha\)-Fe\(_2\)O\(_3\) nanofibers, ethanolAbstract
Enhanced gas sensing properties of hematite \(\alpha\)-Fe2O3 by loaded reduced graphene oxides (RGO) have attracted considerable attention. In this study, RGO-loaded \(\alpha\)-Fe2O3 nanofibers were fabricated via the facile electrospinning method and subsequent calcination process. The scanning electron microscopy (SEM) images showed that RGO-loaded \(\alpha\)-Fe2O3 nanofibers with diameters of 50-100 nm have typical morphologies of spider nets. The X-ray diffraction (XRD) patterns revealed the rhombohedral structure of the RGO-loaded α-Fe2O3 nanofibers. The energy dispersive X-ray spectroscopy (EDS) results exhibited the presence of Fe, O, and C elements in the synthesized nanofibers. The gas sensing results also confirmed that the sensors based on RGO-loaded \(\alpha\)-Fe2O3 nanofibers could be applied for detecting ethanol gas.
Downloads
References
G. Panthi, M. Park, H. Y. Kim, S. Y. Lee, and S. J. Park, “Electrospun ZnO hybrid nanofibers for photodegradation of wastewater containing organic dyes: A review,” J. Ind. Eng. Chem., vol. 21, pp. 26–35, 2015, doi: 10.1016/j.jiec.2014.03.044.
G. Panthi, M. Park, H. Y. Kim, and S. J. Park, “Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: A review,” J. Ind. Eng. Chem., vol. 24, pp. 1–13, 2015, doi: 10.1016/j.jiec.2014.09.011.
M. J. Nalbandian et al., “Chemosphere Synthesis and optimization of Fe 2 O 3 nano fi bers for chromate adsorption from contaminated water sources,” Chemosphere, vol. 144, pp. 975–981, 2016, doi: 10.1016/j.chemosphere.2015.08.056.
S. Zhan, D. Chen, X. Jiao, and S. Liu, “Facile fabrication of long α -Fe 2 O 3 , α -Fe and γ -Fe 2 O 3 hollow fibers using sol – gel combined co-electrospinning technology,” vol. 308, pp. 265–270, 2007, doi: 10.1016/j.jcis.2006.12.026.
S. Zolghadr, K. Khojier, and S. Kimiagar, “Ammonia Sensing P roperties of α -Fe 2 O 3 Thin Films During Post- Annealing Process,” Procedia Mater. Sci., vol. 11, no. 2004, pp. 469–473, 2015, doi: 10.1016/j.mspro.2015.11.058.
A. Mirzaei, B. Hashemi, and K. Janghorban, “α-Fe2O3 based nanomaterials as gas sensors,” J. Mater. Sci. Mater. Electron., vol. 27, no. 4, pp. 3109–3144, 2016, doi: 10.1007/s10854-015-4200-z.
W. S. Hummers and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc., vol. 80, no. 6, pp. 1339–1339, 1958, doi: 10.1021/ja01539a017.
S. Basu and P. Bhattacharyya, “Recent developments on graphene and graphene oxide based solid state gas sensors,” Sensors Actuators B. Chem., vol. 173, pp. 1–21, 2012, doi: 10.1016/j.snb.2012.07.092.
V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, “Graphene based materials: Past, present and future,” Prog. Mater. Sci., vol. 56, no. 8, pp. 1178–1271, 2011, doi: 10.1016/j.pmatsci.2011.03.003.
W. Yuan and G. Shi, “Graphene-based gas sensors,” J. Mater. Chem. A, vol. 1, no. 35, p. 10078, 2013, doi: 10.1039/c3ta11774j.
L. Guo et al., “Reduced graphene oxide/α-Fe2O3 composite nanofibers for application in gas sensors,” Sensors Actuators B Chem., vol. 244, pp. 233–242, 2017, doi: https://doi.org/10.1016/j.snb.2016.12.137.
S. Liang, H. Bi, J. Ding, J. Zhu, Q. Han, and X. Wang, “Synthesis of α -Fe2O3 with the aid of graphene and its gas-sensing property to ethanol,” Ceram. Int., vol. 41, pp. 6978–6984, 2015, doi: 10.1016/j.ceramint.2015.02.003.
T. Hu, X. Chu, F. Gao, Y. Dong, W. Sun, and L. Bai, “Trimethylamine sensing properties of graphene quantum Dots/α-Fe2O3 composites,” J. Solid State Chem., vol. 237, pp. 284–291, 2016, doi: 10.1016/j.jssc.2016.02.037.
H. Zhang, L. Yu, Q. Li, Y. Du, and S. Ruan, “Reduced graphene oxide/α-Fe2O3 hybrid nanocomposites for room temperature NO2 sensing,” Sensors Actuators B Chem., vol. 241, pp. 109–115, 2017, doi: 10.1016/j.snb.2016.10.059.
B. Zhang et al., “Enhanced gas sensing properties to acetone vapor achieved by α-Fe2O3 particles ameliorated with reduced graphene oxide sheets,” Sensors Actuators B Chem., vol. 241, pp. 904–914, 2017, doi: 10.1016/j.snb.2016.11.023.
N. Van Hoang, P. H. Phuoc, C. M. Hung, and N. Van Hieu, “Investigating NO2 sensing capabilities of the electrospun α -Fe2O3 nanofibers-based sensors,” in The 12th Asian Conference on Chemical Sensors (ACCS2017), Hanoi, 2017, pp. 340–343.
V. H. Nguyen, V. D. Nguyen, Q. D. Do, T. M. N. Quan, M. H. Chu, and V. H. Nguyen, “On-chip ZnO nanofibers prepared by electrospinning method for NO2 gas detection,” Commun. Phys., vol. 27, no. 4, p. 317, 2018, doi: 10.15625/0868-3166/27/4/10899.
N. Van Hoang, C. M. Hung, N. D. Hoa, N. Van Duy, and N. Van Hieu, “Facile on-chip electrospinning of ZnFe2O4 nanofiber sensors with excellent sensing performance to H2S down ppb level,” J. Hazard. Mater., vol. 360, no. July, pp. 6–16, 2018, doi: 10.1016/j.jhazmat.2018.07.084.
N. Van Hieu, N. D. Khoang, D. D. Trung, L. D. Toan, N. Van Duy, and N. D. Hoa, “Comparative study on CO2 and CO sensing performance of LaOCl-coated ZnO nanowires.,” J. Hazard. Mater., vol. 244–245, pp. 209–16, Jan. 2013, doi: 10.1016/j.jhazmat.2012.11.023.
N. Van Toan et al., “Fabrication of highly sensitive and selective H2 gas sensor based on SnO2 thin film sensitized with microsized Pd islands,” J. Hazard. Mater., vol. 301, pp. 433–442, 2016, doi: 10.1016/j.jhazmat.2015.09.013.
D. Dang, N. Duc, P. Van Tong, and N. Van Duy, “Effective decoration of Pd nanoparticles on the surface of SnO 2 nanowires for enhancement of CO gas-sensing performance,” J. Hazard. Mater., vol. 265, pp. 124–132, 2014, doi: 10.1016/j.jhazmat.2013.11.054.
N. Van Hoang, C. M. Hung, N. D. Hoa, N. Van Duy, I. Park, and N. Van Hieu, “Excellent detection of H2S gas at ppb concentrations using ZnFe2O4 nanofibers loaded with reduced graphene oxide,” Sensors Actuators, B Chem., vol. 282, no. August 2018, pp. 876–884, 2019, doi: 10.1016/j.snb.2018.11.157.
N. Van Hoang et al., “Enhanced H2S gas-sensing performance of α-Fe2O3 nanofibers by optimizing process conditions and loading with reduced graphene oxide,” J. Alloys Compd., vol. 826, 2020, doi: 10.1016/j.jallcom.2020.154169.
Y. Cheng et al., “Low cost fabrication of highly sensitive ethanol sensor based on Pd-doped α-Fe2O3 porous nanotubes,” Mater. Res. Bull., vol. 105, pp. 21–27, 2018, doi: 10.1016/j.materresbull.2018.04.025.
L. Guo et al., “Reduced graphene oxide/Α-Fe2O3 composite nanofibers for application in gas sensors,” Sensors Actuators, B Chem., vol. 244, pp. 233–242, 2017, doi: 10.1016/j.snb.2016.12.137.
L. Sun et al., “rGO functionalized α-Fe2O3/Co3O4 heterojunction for NO2 detection,” Sensors Actuators B Chem., vol. 354, no. 2, p. 131194, 2022, doi: 10.1016/j.snb.2021.131194.
W. Zheng, Z. Li, H. Zhang, W. Wang, Y. Wang, and C. Wang, “Electrospinning route for α-Fe2O3 ceramic nanofibers and their gas sensing properties,” Mater. Res. Bull., vol. 44, no. 6, pp. 1432–1436, 2009, doi: 10.1016/j.materresbull.2008.12.013.
C. M. Hung, N. D. Hoa, N. Van Duy, N. Van Toan, D. T. T. Le, and N. Van Hieu, “Synthesis and gas-sensing characteristics of α-Fe2O3 hollow balls,” J. Sci. Adv. Mater. Devices, vol. 1, no. 1, pp. 45–50, 2016, doi: 10.1016/j.jsamd.2016.03.003.
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


