Comparison of optical features in nitrobenzene-core photonic crystal fiber with hexagonal and square lattices in the claddings
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/21873Keywords:
Photonic crystal fibers (PCFs), hexagonal lattice, square lattice, supercontinuum generation (SCG), dispersionAbstract
This paper proposes two novel photonic crystal fibers (PCFs) with a nitrobenzene core, designed using hexagonal and square lattice structures. The characteristics of the PCFs were numerically analyzed in detail and compared to selecting the proposed optimal structure for supercontinuum generation. This study investigates the influence of core diameter (DC) on the characteristics of PCF. The fiber’s nonlinear properties are significantly enhanced by varying the core diameter. The hexagonal PCF structures provide flatter dispersion curves and are closer to zero dispersion than the square lattice, which is beneficial for supercontinuum generation. In contrast, the square PCF structures show higher nonlinear coefficients and lower attenuation than the corresponding hexagonal structures. Based on the simulation results, six optimized structures with all-normal and anomalous dispersion were selected to study the characteristics at the pump wavelength. Results indicate that the proposed PCFs exhibit near-zero flat dispersion, low attenuation and high nonlinearity. The selected optimal structures show potential for efficient supercontinuum generation, enabling broad and highly coherent spectra.
Downloads
References
[1] J. C. Knight, T. A. Birks, P. S. J. Russell and D. M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21 (2020) 1547.
[2] T. A. Birks, J. C. Knight and P. S. J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett. 22 (1997) 961.
[3] J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth and P. S. J. Russell, Anomalous dispersion in photonic crystal fiber, IEEE Photon. Technol. Lett. 12 (2000) 807.
[4] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks et al., Highly birefringent photonic crystal fibers, Opt. Lett. 25 (2000) 1325.
[5] V. Finazzi, T. M. Monro and D. J. Richardson, Small-core silica holey fibers: nonlinearity and confinement loss trade-offs, J. Opt. Soc. Am. B 20 (2003) 1427.
[6] W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man and P. S. J. Russell, Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source, J. Opt. Soc. Am. B 19 (2002) 2148.
[7] S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang and S. R. Keiding, Ir microscopy utilizing intense supercontinuum light source, Opt. Express 20 (2012) 4887.
[8] K. Ke, C. Xia, M. N. Islam, M. J. Welsh and M. J. Freeman, Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser, Opt. Express 17 (2009) 12627.
[9] C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd et al., Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source, Opt. Lett. 43 (2018) 999.
[10] B. Liu, M. Hu, X. Fang, Y. Wu, Y. Song, L. Chai et al., High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing, Laser Phys. Lett. 6 (2009) 44.
[11] T. Udem, R. Holzwarth and T. W. Hänsch, Optical frequency metrology, Nature 416 (2002) 233.
[12] R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic et al., Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass, Laser Phys. Lett. 8 (2011) 443.
[13] J. K. Ranka, R. S. Windeler and A. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, Opt. Lett. 25 (2000) 25.
[14] J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton et al., Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping, J. Opt. Soc. Am. B 19 (2002) 765.
[15] K. D. Xuan, L. C. Van, Q. H. Dinh, L. V. Xuan, M. Trippenbach and R. Buczynski, Dispersion characteristics of a suspended-core optical fiber infiltrated with water, Appl. Opt. 56 (2017) 1012.
[16] L. T. B. Tran, N. T. Thuy, V. T. M. Ngoc, L. C. Trung, L. V. Minh, C. L. Van et al., Analysis of dispersion characteristics of solid-core PCFs with different types of lattices in the claddings, infiltrated with ethanol, Photonics Lett. Pol. 12 (2020) 106.
[17] P. Chauhan, A. Kumar and Y. Kalra, Supercontinuum generation in a hollow-core methanol-silica based photonic crystal fiber: computational model and analysis, Proc. SPIE 11498 (2020) 114980T.
[18] A. Sharafali, A. K. S. Ali and M. Lakshmanan, Modulation instability induced supercontinuum generation in liquid core suspended photonic crystal fiber with cubic-quintic nonlinearities, Phys. Lett. A 399 (2022) 127290.
[19] C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc et al., Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation, Laser Phys. 29 (2019) 075107.
[20] C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc et al., Supercontinuum generation in benzene-filled hollow-core fibers, Opt. Eng. 60 (2021) 116109.
[21] H. V. Le, V. T. Hoang, H. T. Nguyen, V. C. Long, R. Buczyński and R. Kasztelanic, Supercontinuum generation in photonic crystal fibers infiltrated with tetrachloroethylene, Opt. Quant. Electron. 53 (2021) 187.
[22] L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. X. Dinh, M. Trippenbach et al., Supercontinuum generation in photonic crystal fibers with core filled with toluene, J. Opt. 19 (2017) 125604.
[23] Y. Xu, X. Chen and Y. Zhu, High sensitive temperature sensor using a liquid-core optical fiber with small refractive index difference between core and cladding materials, Sensors 8 (2008) 1872.
[24] R. L. Sutherland, D. G. McLean and S. Kirkpatrick, Handbook of Nonlinear Optics. CRC Press, Boca Raton, 2003.
[25] V. T. Quoc, C. T. G. Trang, L. V. Minh, N. T. Thuy, N. T. H. Phuong, D. Q. Khoa et al., Feature properties of photonic crystal fiber with hollow core filled by nitrobenzene, Comm. Phys. 30 (2020) 331.
[26] L. C. Van, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc et al., Supercontinuum generation in photonic crystal fibers infiltrated with nitrobenzene, Laser Phys. 30 (2020) 035105.
[27] G. Yanchen, Y. Jinhui, W. Kuiru, W. Haiyun, C. Yujun, Z. Xian et al., Generation of supercontinuum and frequency comb in a nitrobenzene-core photonic crystal fiber with all-normal dispersion profile, Opt. Commun. 481 (2021) 126555.
[28] J. Wen, L. Bozhi, Q. Weijun, S. Wei, H. Chenyao and X. Keyu, High coherent supercontinuum generation in nitrobenzene liquid-core photonic crystal fiber with elliptical air-hole inner ring, Opt. Quant. Electron. 54 (2022) 817.
[29] V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman et al., All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene, Opt. Mater. Express 8 (2018) 3568.
[30] M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton et al., Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers, Opt. Express 18 (2010) 25232.
[31] H. V. Le, V. T. Hoang, Q. D. Ho, H. T. Nguyen, N. V. T. Minh, M. Klimczak et al., Silica-based photonic crystal fiber infiltrated with 1,2-dibromoethane for supercontinuum generation, Appl. Opt. 60 (2021) 7268.
[32] Q. H. Dinh, J. Pniewski, H. L. Van, A. Ramaniuk, V. C. Long, K. Borzycki et al., Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses, Appl. Opt. 57 (2018) 3738.
[33] V. T. Hoang, R. Kasztelanic, G. Stepniewski, K. D. Xuan, V. C. Long, M. Trippenbach et al., Femtosecond supercontinuum generation around 1560 nm in hollow-core photonic crystal fibers filled with carbon tetrachloride, Appl. Opt. 59 (2020) 3720.
[34] V. T. Hoang, R. Kasztelanic, A. Filipkowski, G. Stepniewski, D. Pysz, M. Klimczak et al., Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride, Opt. Mater. Express 9 (2019) 2264.
[35] L. C. Van, H. V. Le, N. D. Nguyen, N. V. T. Minh, Q. H. Dinh, V. T. Hoang et al., Modeling of lead-bismuth gallate glass ultra-flatted normal dispersion photonic crystal fiber infiltrated with tetrachloroethylene for high coherence mid-infrared supercontinuum generation, Laser Phys. 32 (2022) 055102.
[36] K. Saitoh, M. Koshiba, T. Hasegawa and E. Sasaoka, Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion, Opt. Express 11 (2003) 843.
[37] G. P. Agrawal, Nonlinear Fiber Optics. Academic Press, Elsevier, 2013.
[38] C. Z. Tan, Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy, J. Non-Cryst. Solids 223 (1998) 158.
[39] S. Kedenburg, M. Vieweg, T. Gissibl and H. Giessen, Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region, Opt. Mater. Express 2 (2012) 1588.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Communications in Physics

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 103.03-2023.01 -
Quỹ Đổi mới sáng tạo Vingroup
Grant numbers VINIF.2023.TS.133


