Dispersion management in organic liquid-cladding photonic crystal fiber based on GeSe\(_2\)–As\(_2\)Se\(_3\)–PbSe chalcogenide

Author affiliations

Authors

DOI:

https://doi.org/10.15625/0868-3166/22079

Keywords:

Photonic crystal fiber, chromatic dispersion, chalcogenide; liquids

Abstract

We present a numerical study of the influence of the liquids on fiber properties. The PCF was proposed based on the GeSe2–As2Se3–PbSe chalcogenide, infiltrated with six organic liquids in air holes in the cladding. The guiding properties in terms of dispersion characteristics, mode area, nonlinear coefficient, and confinement loss of the fundamental mode were numerically investigated. The result is that it is possible to shift the wavelength of the zero dispersion by about 20 nm to longer wavelengths and to reduce the slope of the dispersion curve of the fiber by the liquid filling. The results obtained also show that the PCF has a larger mode area (lower nonlinear coefficient) when infiltrated with liquids with a higher refractive index. At the same time, the presence of liquid in the cladding is responsible for the increase in confinement loss. In particular, the fiber has a lower confinement loss when infiltrated with liquids with a higher refractive index.

Downloads

Download data is not yet available.

References

[1] J. C. Knight, T. A. Birks, P. S. J. Russell and D. M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21 (1996) 1547.

[2] M. A. Habib and M. S. Anower, Low loss highly birefringent porous core fiber for single mode terahertz wave guidance, Curr. Opt. Photon. 2 (2018) 215.

[3] E. Wang, Q. Han, X. Zhou, H. Yuan and J. Li, A bend-resistant photonic crystal fiber with large effective mode area, Opt. Fiber Technol. 71 (2022) 102902.

[4] R. Saha, M. M. Hossain, M. E. Rahaman and H. S. Mondal, Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber, Front. Optoelectron. 12 (2019) 165.

[5] Z. Shen, K. Li, C. Jia and H. Jia, Mid-infrared dual-cladding photonic crystal fiber with high birefringence and high nonlinearity, Opt. Rev. 27 (2020) 296.

[6] T. Sylvestre, E. Genier, A. N. Ghosh, P. Bowen, G. Genty, J. Troles et al., Recent advances in supercontinuum generation in specialty optical fibers, J. Opt. Soc. Am. B 38 (2021) F90.

[7] W. J. Wadsworth, A. O. Blanch, J. C. Knight, T. A. Birks, T. P. M. Man and P. S. J. Russell, Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source, J. Opt. Soc. Am. B 19 (2002) 2148.

[8] J. M. Dudley, G. Genty and S. Coen, Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys. 78 (2006) 1135.

[9] G. P. Agrawal, Nonlinear Fiber Optics. Academic Press, Elsevier, 2013, 10.1016/B978-0-12-397023-7.00011-5.

[10] S. Roy, D. Ghosh, S. K. Bhadra and G. P. Agrawal, Role of dispersion profile in controlling emission of dispersive waves by solitons in supercontinuum generation, Opt. Commun. 283 (2010) 3081.

[11] I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, J. A. A. Lucio, A. Diez and M. Andres, Supercontinuum generation at 800 nm in all-normal dispersion photonic crystal fiber, Opt. Express 22 (2014) 30234.

[12] C. Huang, M. Liao, W. Bi, X. Li, L. Hu, L. Zhang et al., Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion, Photon. Res. 6 (2018) 601.

[13] Y. Huang, H. Yang, S. Zhao, Y. Mao and S. Chen, Design of photonic crystal fibers with flat dispersion and three zero dispersion wavelengths for coherent supercontinuum generation in both normal and anomalous regions, Results Phys. 23 (2021) 104033.

[14] H. L. Van, V. T. Hoang, T. L. Canh, Q. H. Dinh, H. T. Nguyen, N. V. T. Minh et al., Silica-based photonic crystal fiber infiltrated with 1,2-dibromoethane for supercontinuum generation, Appl. Opt. 60 (2021) 7268.

[15] T. S. Saini and R. K. Sinha, Mid-infrared supercontinuum generation in soft-glass specialty optical fibers: A review, Prog. Quantum Electron. 78 (2021) 100342.

[16] H. V. Le, V. L. Cao, H. T. Nguyen, A. M. Nguyen, R. Buczyński and R. Kasztelanic, Application of ethanol infiltration for ultra-flattened normal dispersion in fused silica photonic crystal fibers, Laser Phys. 28 (2018) 115106.

[17] J. Pniewski, T. Stefaniuk, H. L. Van, V. C. Long, L. C. Van, R. Kasztelanic et al., Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids, Appl. Opt. 55 (2016) 5033.

[18] Q. Lin, J. Zhang, P. M. Fauchet and G. P. Agrawal, Ultrabroadband parametric generation and wavelength conversion in silicon waveguides, Opt. Express 14 (2006) 4786.

[19] Z. Jafari, L. Zhang, A. M. Agarwal, L. C. Kimerling, J. Michel and A. Zarifkar, Parameter space exploration in dispersion engineering of multilayer silicon waveguides from near-infrared to mid-infrared, J. Lightwave Technol. 34 (2016) 3696.

[20] H. V. Le, Coherence evolution of multi-pulse pumped super-continuum in multicomponent GeSe₂–As₂Se₃–PbSe chalcogenide photonic crystal fiber with four zero-dispersion wavelengths, J. Opt. Soc. Am. B 41 (2024) 2780.

[21] T. T. Hong, T. N. Xuan, H. T. Nguyen, V. T. Hoang and H. V. Le, Highly coherent supercontinuum generation in a photonic crystal fiber based on GeSe₂–As₂Se₃–PbSe chalcogenide in the mid-infrared region, Appl. Opt. 63 (2024) 5494.

[22] H. L. Van, V. T. Hoang, H. T. Nguyen, V. C. Long, R. Buczyński and R. Kasztelanic, Supercontinuum generation in photonic crystal fibers infiltrated with tetrachloroethylene, Opt. Quantum Electron. 53 (2021) 02820.

[23] Q. H. Ding, J. Pniewski, H. L. Van, A. Ramaniuk, V. C. Long, K. Borzycki et al., Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses, Appl. Opt. 57 (2018) 3738.

[24] C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc et al., Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation, Laser Phys. 29 (2019) 075107.

[25] L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. X. Dinh, M. Trippenbach et al., Supercontinuum generation in photonic crystal fibers with core filled with toluene, J. Opt. 19 (2017) 125604.

Downloads

Published

01-04-2025

How to Cite

[1]
V. H. Le, “Dispersion management in organic liquid-cladding photonic crystal fiber based on GeSe\(_2\)–As\(_2\)Se\(_3\)–PbSe chalcogenide”, Comm. Phys., vol. 35, no. 1, p. 87, Apr. 2025.

Issue

Section

Papers

Most read articles by the same author(s)

Similar Articles

<< < 5 6 7 8 9 10 

You may also start an advanced similarity search for this article.