Mobility Enhancement in Square Quantum Wells: Symmetric Modulation of the Envelop Wave Function
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/20/3/2212Abstract
We present a theoretical study of the effects from symmetric modulation of the envelop wave function on quantum transport in square quantum wells (QWs). Within the variational approach we obtain analytic expressions for the carrier distribution and their scattering in symmetric two-side doped square QWs. Roughness-induced scattering are found significantly weaker than those in the asymmetric one-side doped counterpart. Thus, we propose symmetric modulation of the wave function as an efficient method for enhancement of the roughness-limited QW mobility. Our theory is able to well reproduce the recent experimental data about low-temperature transport of electrons and holes in two-side doped square QWs, e.g., the mobility dependence on the channel width, which have not been explained so far.Downloads
References
T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54 (1982) 437.
M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80 (1996) 2234.
T. Dziekan,P. Zahn, V. Meded, and S. Mirbt, Phys. Rev. B 75, 195213 (2007).
M. V. Fischetti, F. G´amiz, and W. H¨ansch, J. Appl. Phys. 92 (2002) 7320.
J. E. Schirbir, I. J. Fritz, and L. R. Dawson, Appl. Phys. Lett. 46 (1985) 187.
M. L. Lee, C. W. Leitz, Z. Cheng, A. J. Pitera, T. Langdo, M. T. Currie, G. Taraschi, E. A. Fitzgerald,
and D. A. Antoniadis, Appl. Phys. Lett. 79 (2001) 3344.
M. Myronov, T. Irisawa, S. Koh, O. A. Mironov, T. E. Whall, E. H. C. Parker, and Y. Shiraki, J.
Appl. Phys. 97 (2005) 083701.
R. E. Belford, B. P. Guo, Q. Xu, S. Sood, A. A. Thrift, A. Teren, A. Acosta, L. A. Bosworth, and J.
S. Zell, J. Appl. Phys. 100 (2006) 064903.
J. D. Sau and M. L. Cohen, Phys. Rev. B 75 (2007) 045208.
DOAN NHAT QUANG, NGUYEN HUYEN TUNG, NGUYEN TRUNG HONG, AND TRAN THI HAI
R. Dingle, H. L. St¨ormer, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33 (1978) 665.
T. Tsuchiya and T. Ando, Phys. Rev. B 48 (1993) 4599.
G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique,
Paris, 1988).
R. M. Feenstra and M. A. Lutz, J. Appl. Phys. 78 (1995) 6091.
D. N. Quang, V. N. Tuoc, N. H. Tung, and T. D. Huan, Phys. Rev. Lett. 89 (2002) 077601; Phys.
Rev. B 68 (2003) 153306.
D. N. Quang and N. H. Tung, Phys. Rev. B 77 (2008) 125335.
D. N. Quang, N. H. Tung, D. T. Hien, and T. T. Hai, J. Appl. Phys. 104 (2008) 113711.
Y. H. Xie, D. Monroe, E. A. Fitzgerald, P. J. Silverman, F. A. Thiel, and G. P. Watson, Appl. Phys.
Lett. 63 (1993) 2263.
K. L. Campman, H. Schmidt, A. Imamoglu, and A. C. Gossard, Appl. Phys. Lett. 69 (1996) 2554.
H. C¸ elik, M. Cankurtaran, A. Bayrakli, E. Tiras, and N. Balkan, Semicon. Sci. Technol. 12 (1997)
N. Balkan, R. Gupta, M. Cankurtaran, H. C¸ elik, A. Bayrakli, E. Tiras, and M. C¸ . Arikan, Superlattices
Microstruct. 22 (1997) 263.
M. Cankurtaran, H. C¸ elik, E. Tiras, A. Bayrakli, and N. Balkan, Phys. Status Solidi B 207 (1998)
R. J. H. Morris, T. J. Grasby, R. Hammond, M. Myronov, O. A. Mironov, D. R. Leadley, T. E. Whall,
E. H. C. Parker, M. T. Currie, C. W. Leitz, and E. A. Fitzgerald, Semicond. Sci. Technol. 19 (2004)
L106.
C. Gerl, S. Schmult, H.-P. Tranitz, C. Mitzkus, and W. Wegscheider, Appl. Phys. Lett. 86 (2005)
C. Gerl, S. Schmult, U. Wurstbauer, H.-P. Tranitz, C. Mizkus, and W. Wegscheider, Physica E 32
(2006) 258.
B. R¨ossner, H. von K¨anel, D. Chrastina, G. Isella, and B. Batlogg, Thin Solid Films 508 (2006) 351.
M. Myronov, K. Sawano, and Y. Shiraki, Appl. Phys. Lett. 88 (2006) 252115.
F. Szmulowicz, S. Elhamri, H. J. Haugan, G. J. Brown, and W. C. Mitchel, J. Appl. Phys. 101 (2007)
C. G. Van de Walle and R. M. Martin, Phys. Rev. B 34 (1986) 5621.
A. Gold, Phys. Rev. B 35 (1987) 723; 38 (1988) 10798.
A. Kahan, M. Chi, and L. Friedman, J. Appl. Phys. 75, 8012 (1994).
A. Gold, J. Appl. Phys. 1033 (2008) 043718.
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


