Dielectric and Relaxor Ferroelectric Properties in \(\text{PZT-PMnN-PSbN}\) Ceramics
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/22/3/2263Keywords:
relaxor ferroelectric, PZT-PMnN-PSbN, Columbite precursor rout, diffuse phase transition, nanopolar regionsAbstract
The rhombohedral perovskite 0.9Pb(Zr0.5Ti0.5)O3 – xPb(Mn1/3Nb1/3)O3 – (0.1-x)Pb(Sb1/2Nb1/2)O3, x = 0.05; 0.06; 0.07; 0.08; 0.09; 0.1 (PZT – PMnN – PSbN) ceramic was synthesized by the Columbite precursor rout. The temperature dependence of dielectric constant and its loss in a frequency region of 0.1 kHz – 500 kHz were measured in aim to search the weak-field dielectric response in PZT-PMnN-PSbN systems. A high value of εmax > 20000 was found at 1 kHz with the temperature Tm of around 575K. Using an extended Curie-Weis law the diffuse phase transition was determined. Fitting by using Vogel – Fulcher and power relationship indicated that the polarization fluctuation above the static freezing temperature behaves like as a spin-glass one. Cole – Cole analyses showed the non – Debye type relaxation in the system.Downloads
References
A. I. Kingon, S. K. Streiffier, C. Basceri and S. R. Summerfelt, Mat. Res. Bull. 21 (1996) 46.
D. L. Polla and L. F. Francis, Mat. Res. Bull. 21 (1996) 59.
S. Saha and T. P. Sinha, J. Phys.; Condens. Matter 14 (2002) 249.
S. K. Sinha, R. N. P. Choudhary, S. N. Choudhary, T. P. Sinha, Materials Letters 51 (2001) 336.
L. E. Cross, Ferroelectrics, 76, 241 (1987); (b) L. E. Cross, Ferroelectrics 151 (1994) 305
S. B. Majumdar, S. Bhattacharyya and R. S. Katiyar, J. Appl. Phys. 99 (2006) 024108.
M. Maglion and M. Belkaoumi, Phys. Rev. B 45 (1992) 2029.
G. Burns and F. H. Dacol, Solid State Commun. 48 (1983) 853.
J.Chen, H.M. Chan, M.P. Harmer, J.Am. Ceram, Soc., 72(4) (1989) 593.
Y. Xu, Ferroelectric, Materials and Their Applications, North Holland (1991)
S.P. Singh, A.K. Singh, D. Pandey, J. Mater. Res. 18 (2003) 2677
S.B. Lee, K.H. Lee, H. Kim, Jpn. J. Appl. Phys. 41 (2002) 5266.
D.R. Chen, Y.Y. Guo, Electron. Element. Mater 1 (1982) 25.
Sinclair D C West A R, J Appl Phys, 66 (1989) 38351.
J.R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems, Wiley, New York, (1987).
K. S. Cole and R. H. Cole J. Chem. Phys. 9 (1941). 341
G. A. Smolensky, A. I. Agranovskaya, S. N. Popov and V. A. Isupov, Sov. Phys. Tech. Phys. 3 (1958) 1981.
N. Setter and L. E. Cross, J. Appl. Phys. 51 (1980) 4356.
C. A. Randall and A. S. Bhalla, Jpn. J. Appl. Phys. 29 (1990) 327.
X. He, X. Zeng, X. Zheng, P. Qiu, W. Cheng, A. Ding, Journal of Physics: Conference Series 152 (2009) 012068.
K. Bormanis, A. I. Burkhanova, A. V. Shil′nikova, A. Sternberg, S. A. Satarova, Journal of Optoelectronics and Advanced Materials Vol. 6(1) (2004) 341.
R. Pirc and R. Blinc, Physical review B 76 (2007) 020101.
B. Mihailova, B.J. Maier, N. Waeselmann, C. Paulmann, M. Gospodinov, U. Bismayer (2011) 12th European Meeting on Ferroelectricity, 3A-2O
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


