Characterization of Au/TiO\(_2\) nanocomposite and its application to photocatalytic degradation of methylene blue
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/22700Keywords:
Au/TiO\(_2\) nanocomposite, photocatalysis, methylene blue degradationAbstract
Au nanoparticles were deposited on the surface of TiO2 particles using a photochemical reduction method. This modification creates a surface plasmon effect that enhances the local light intensity at the interface of Au and TiO2 nanoparticles. Au/TiO2 nanocomposites with varying Au content (0.5%, 1%, 3%, and 5%) were synthesized, resulting in Au nanoparticles of approximately 2 nm in size uniformly distributed on the TiO2 surface, forming composite particles of the size ranging from 100 nm to 150 nm. The prepared samples were characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), UV-Vis absorption spectra, photoluminescence spectra and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the nanocomposites was evaluated. Compared with pure TiO2, Au/TiO2 exhibited higher activities for methylene blue decomposition. The rate constants of pseudo-first-order kinetics for Au-modified TiO₂ with Au contents of 0.5%, 1%, 3%, and 5% were 0.0456, 0.0579, 0.0536, and 0.0484 min⁻¹, respectively. These values are 1.66, 2.11, 1.95, and 1.76 times higher than that of unmodified TiO₂.
Downloads
References
[1] R. P. Zaccaria, F. Bisio, G. Das, G. Maidecchi, M. Caminale, C. D. Vu et al., Plasmonic color-graded nanosystems with achromatic subwavelength architectures for light filtering and advanced SERS detection, ACS Appl. Mater. Interfaces 8 (2016) 8024.
[2] V. D. Chinh and N. Q. Trung, Synthesis and optical properties of colloidal Au–Ag alloy nanoparticles, Int. J. Nanotechnol. 12 (2015) 515.
[3] P. K. Jain, X. Huang, I. H. El-Sayed and M. A. El-Sayed, Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems, Plasmonics 2 (2007) 107.
[4] O. K. Orhan and M. Ponga, Surface-plasmon properties of noble metals with exotic phases, J. Phys. Chem. C 125 (2021) 21521.
[5] R. Liu, D. Zhan, D. Wang, C. Han, Q. Fu, H. Zhu et al., Surface plasmon resonance effect of noble metal (Ag and Au) nanoparticles on BiVO4 for photoelectrochemical water splitting, Inorganics 11 (2023) 206.
[6] H. Aghlara, R. Rostami, A. Maghoul and A. SalmanOgli, Noble metal nanoparticle surface plasmon resonance in absorbing medium, Optik 126 (2015) 417.
[7] M. I. Anik, N. Mahmud, A. A. Masud and M. Hasan, Gold nanoparticles (GNPs) in biomedical and clinical applications: A review, Nano Sel. 3 (2022) 792.
[8] S. Park, V. P. Nguyen, X. Wang and Y. M. Paulus, Gold nanoparticles for retinal molecular optical imaging, Int. J. Mol. Sci. 25 (2024) 9315.
[9] G. Rajendran, T. Rajamuthuramalingam, D. M. I. Jesse and K. Kathiravan, Synthesis and characterization of biocompatible acetaminophen stabilized gold nanoparticles, Mater. Res. Express 6 (2019) 095043.
[10] N. Wehbe, J. E. Mesmar, R. E. Kurdi, A. Al-Sawalmih, A. Badran, D. Patra et al., Halodule uninervis extract facilitates the green synthesis of gold nanoparticles with anticancer activity, Sci. Rep. 15 (2025) 4286.
[11] X. Hu, Y. Zhang, T. Ding, J. Liu and H. Zhao, Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities, Front. Bioeng. Biotechnol. 8 (2020) 990.
[12] D. K. Das, A. Chakraborty, S. Bhattacharjee and S. Dey, Biosynthesis of stabilised gold nanoparticle using an aglycone flavonoid, quercetin, J. Exp. Nanosci. 8 (2013) 649.
[13] V. D. Chinh, I. Bavasso, L. D. Palma, A. C. Felici, M. Scarsella, G. Vilardi et al., Enhancing the photocatalytic activity of TiO2 and TiO2–SiO2 by coupling with graphene–gold nanocomposites, J. Mater. Sci.: Mater. Electron. 32 (2021) 5082.
[14] V. D. Chinh, N. Q. Liem, H. S. Cho and S. C. Jeoung, Relaxation dynamics of photoexcitations in TiO2 and its composites with Au/carbon nanotube (graphene), Catal. Commun. 139 (2020) 105970.
[15] V. D. Chinh, L. X. Hung, L. D. Palma, V. T. H. Hanh and G. Vilardi, Effect of carbon nanotubes and carbon nanotubes/gold nanoparticles composite on the photocatalytic activity of TiO2 and TiO2–SiO2, Chem. Eng. Technol. 42 (2019) 308.
[16] V. D. Chinh, A. Broggi, L. D. Palma, M. Scarsella, G. Speranza, G. Vilardi et al., XPS spectra analysis of Ti2+, Ti3+ ions and dye photodegradation evaluation of titania–silica mixed oxide nanoparticles, J. Electron. Mater. 47 (2018) 2215.
[17] N. K. Pal and C. Kryschi, Improved photocatalytic activity of gold decorated differently doped TiO2 nanoparticles: A comparative study, Chemosphere 144 (2016) 1655.
[18] A. Orlov, D. A. Jefferson, N. Macleod and R. M. Lambert, Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of 4-chlorophenol in aqueous solution, Catal. Lett. 92 (2004) 41.
[19] V. Jovic, W.-T. Chen, D. Sun-Waterhouse, M. G. Blackford, H. Idriss and G. I. N. Waterhouse, Effect of gold loading and TiO2 support composition on the activity of Au/TiO2 photocatalysts for H2 production from ethanol–water mixtures, J. Catal. 305 (2013) 307.
[20] S. M. Kim, S. J. Lee, S. H. Kim, S. Kwon, K. J. Yee, H. Song et al., Hot carrier-driven catalytic reactions on Pt–CdSe–Pt nanodumbbells and Pt/GaN under light irradiation, Nano Lett. 13 (2013) 1352.
[21] Z. Al-Azri, M. AlOufi, A. Chan, G. Waterhouse and H. Idriss, Metal particle size effects on the photocatalytic hydrogen ion reduction, ACS Catal. 9 (2019) 3946.
[22] M. Tamura, M. Honda, K. Noro, Y. Nakagawa and K. Tomishige, Heterogeneous CeO2-catalyzed selective synthesis of cyclic carbamates from CO2 and aminoalcohols in acetonitrile solvent, J. Catal. 305 (2013) 191.
[23] X. Zhang, Y. L. Chen, R.-S. Liu and D. P. Tsai, Plasmonic photocatalysis, Rep. Prog. Phys. 76 (2013) 046401.
[24] T. V. Chinh, T. T. H. Anh, H. T. C. Tu, H. V. Truong, N. T. H. Phuong, H. P. Hien et al., Study on photocatalytic degradation of methylene blue by TiO2 synthesized from titanium slag using a new decomposition agent, Vietnam J. Catal. Adsorption 11 (2022) 88.
[25] P. Sangpour, F. Hashemi and A. Z. Moshfegh, Photoenhanced degradation of methylene blue on cosputtered M:TiO2 (M = Au, Ag, Cu) nanocomposite systems: A comparative study, J. Phys. Chem. C 114 (2010) 13955.
[26] F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A. A. Nazeer, M. O. Amin et al., The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles, Sci. Rep. 8 (2018) 7104.
[27] C. I. Tarcea, C. M. Pantilimon, E. Matei, A. M. Predescu, A. C. Berbecaru, M. Rapa et al., Photocatalytic degradation of methylene blue dye using TiO2 and Fe3O4/SiO2/TiO2 as photocatalysts, IOP Conf. Ser.: Mater. Sci. Eng. 877 (2020) 012008.
[28] M. L. Gong, H. T. Fu, X. H. Yang and X. Z. An, Preparation of Au@TiO2 yolk-shell nanocomposites for solar-light degradation of methylene blue, IOP Conf. Ser.: Mater. Sci. Eng. 504 (2019) 012016.
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


