Thermodynamic properties of the first-order magnetic transition in the highly anisotropic 2D Blume-Capel model
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/22722Keywords:
Blume-Capel model, random anisotropy, Phase transition, Monte Carlo simulationAbstract
The effect of anisotropy on the first-order magnetic transition (FOMT) in the highly anisotropic systems, such as perovskite manganite oxides, is investigated using Monte Carlo simulations of a two-dimensional (2D) spin \(S = 1\) Blume-Capel model with random anisotropy. For sufficiently large values of anisotropy probability \(p\) and corresponding amplitude \(D\), the second-order magnetic transition (SOMT) transforms into the FOMT. The presence of the FOMT is indicated not only by a sharp discontinuity in the magnetic moment at the critical temperature \(T_C^{(1)}\), but also by significant changes in the internal energy and magnetic moment histograms. As the type of the phase transition changes, thermodynamic observables display distinctly different behavior around \(T_C^{(1)}\). A phase diagram illustrating the SOMT-to-FOMT crossover induced by random anisotropy in high-\(p\) regimes is successfully constructed.
Downloads
References
[1] S. Kumar, G. G. Riera, A. Arauzo, J. Hruby, S. Hill, L. Bogani et al., On-surface magnetocaloric effect for a van der Waals Gd 2D MOF grown on Si, J. Mater. Chem. A 12 (2024) 6269.
[2] X.-Q. Zheng and B.-G. Shen, The magnetic properties and magnetocaloric effects in binary R–T (R = Pr, Gd, Tb, Dy, Ho, Er, Tm; T = Ga, Ni, Co, Cu) intermetallic compounds, Chin. Phys. B 26 (2017) 027501.
[3] F. Guillou, A. K. Pathak, D. Paudyal, Y. Mudryk, F. Wilhelm, A. Rogalev et al., Non-hysteretic first-order phase transition with large latent heat and giant low-field magnetocaloric effect, Nat. Commun. 9 (2018) 2925.
[4] F. Guillou, G. Porcari, H. Yibole, N. van Dijk and E. Bruck, Taming the first-order transition in giant magnetocaloric materials, Adv. Mater. 26 (2014) 2671.
[5] L. Li, Y. Yuan, Y. Zhang, T. Namiki, K. Nishimura, R. Pottgen et al., Giant low field magnetocaloric effect and field-induced metamagnetic transition in TMZn, Appl. Phys. Lett. 107 (2015) 132401.
[6] G. H. Bach, O. K. T. Nguyen, C. V. Nguyen and C. T. Bach, First order magnetization process in polycrystalline perovskite manganite, Mater. Trans. 56 (2015) 1320.
[7] A. Biswas, N. A. Zarkevich, A. K. Pathak, O. Dolotko, I. Z. Hlova, A. V. Smirnov et al., First-order magnetic phase transition in Pr2In with negligible thermomagnetic hysteresis, Phys. Rev. B 101 (2020) 224402.
[8] S. Ghosh, T. Paramanik and I. Das, Magnetic phase transitions in R5Pd2 (R = Ho, Dy, Dy0.6Gd0.4) compounds, J. Supercond. Nov. Magn. 37 (2024) 231.
[9] D. Guo, L. M. Moreno-Ramirez, C. Romero-Muniz, Y. Zhang, J.-Y. Law, V. Franco et al., First- and second-order phase transitions in RE6Co2Ga (RE = Ho, Dy or Gd) cryogenic magnetocaloric materials, Sci. China Mater. 64 (2021) 2846.
[10] L. Xi, X. Zheng, Y. Gao, J. Xu, C. Liu, D. Wang et al., Giant low-field magnetocaloric effect of (Er,Y)Cr2Si2 compounds at ultra-low temperatures, Sci. China Mater. 66 (2023) 2039.
[11] S. Mellari, Introduction to magnetic refrigeration: magnetocaloric materials, Int. J. Air-Cond. Refrig. 31 (2023) 5.
[12] N. Chau, P. Q. Niem, H. N. Nhat, N. H. Luong and N. D. Tho, Influence of Cu substitution for Mn on the structure, magnetic, magnetocaloric and magnetoresistance properties of La0.7Sr0.3MnO3 perovskites, Phys. B: Condens. Matter 327 (2003) 214.
[13] Y. Essouda, H. T. Diep, M. Ellouze and E. Hlil, Magnetic properties of perovskites Pr0.9Sr0.1Mn0.93+Mn0.14+O3: Monte Carlo simulations and experiments, J. Magn. Magn. Mater. 588 (2023) 171485.
[14] Y. Essouda, H. T. Diep and M. Ellouze, First-order phase transition in perovskites Pr0.67Sr0.33MnO3 - magneto-caloric properties - effect of multi-spin interaction, J. Magn. Magn. Mater. 599 (2024) 172105.
[15] Y. Essouda, H. T. Diep and M. Ellouze, Phase transition and magneto-caloric properties of perovskites Pr0.55Sr0.45MnO3: Modeling versus experiments, Phys. A: Stat. Mech. Appl. 635 (2024) 129532.
[16] T.-L. Phan, Q. Tran, P. Thanh, P. Yen, T. Thanh and S. Yu, Critical behavior of La0.7Ca0.3Mn1−xNixO3 manganites exhibiting the crossover of first- and second-order phase transitions, Solid State Commun. 184 (2014) 40.
[17] T. L. Phan, T. D. Thanh, T. A. Ho, T. V. Manh, Q. T. Tran, P. Lampen et al., An effective route to control the magnetic-phase transition and magnetocaloric effect of La0.7Ca0.3MnO3 nanoparticles, IEEE Trans. Magn. 50 (2014) 1.
[18] M. Phan, V. Franco, N. Bingham, H. Srikanth, N. Hur and S. Yu, Tricritical point and critical exponents of La0.7Ca0.3−xSrxMnO3 (x = 0, 0.05, 0.1, 0.2, 0.25) single crystals, J. Alloys Compd. 508 (2010) 238.
[19] J. Mira, J. Rivas, F. Rivadulla, C. Vazquez-Vazquez and M. A. Lopez-Quintela, Change from first- to second-order magnetic phase transition in La2/3(Ca,Sr)1/3MnO3 perovskites, Phys. Rev. B 60 (1999) 2998.
[20] T.-L. Phan, P. Zhang, Y. D. Zhang, D. Grinting, T. D. Thanh and S. C. Yu, Rounding of a first-order magnetic phase transition in La0.7Ca0.3Mn0.85Ni0.15O3, J. Appl. Phys. 113 (2013) 17E150.
[21] M. Blume, Theory of the first-order magnetic phase change in UO2, Phys. Rev. 141 (1966) 517.
[22] H. Capel, On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting, Physica 32 (1966) 966.
[23] I. Puha and H. Diep, Random-bond and random-anisotropy effects in the phase diagram of the Blume–Capel model, J. Magn. Magn. Mater. 224 (2001) 85.
[24] E. Bezerra, M. G. da Silva and J. R. de Sousa, First-order transition of the spin-1 Blume–Capel model with random anisotropy using effective-field theory, Physica A 615 (2023) 128510.
[25] P. H. Nguyen, N. T. Nguyen, H. D. Nguyen, H. T. Nguyen, C. T. Bach and G. H. Bach, Random-anisotropy driven giant magnetic entropy change in first-order magnetic transition under external fields, J. Alloys Compd. 1017 (2025) 179001.
[26] O. K. Nguyen, P. H. Nguyen, L. D. Dang, C. T. Bach and G. H. Bach, Fluctuation inducing fractional magnetization behavior on the Shastry–Sutherland lattice, Phys. B: Condens. Matter 583 (2020) 412012.
[27] P. H. Nguyen, Q. M. Le, O. K. Nguyen, C. T. Bach and G. H. Bach, Effective field theory investigation for a disordered Ising model in the description of amorphous magnetic systems, J. Non-Cryst. Solids 643 (2024) 123165.
[28] G. H. Bach, P. H. Nguyen, Q. D. Nguyen and S. N. Bui, Random-anisotropy effects in the second-order phase transition of the 2D Blume–Capel model, Comm. Phys. 35 (2025).
[29] J. A. Plascak, A. M. Ferrenberg and D. P. Landau, Cluster hybrid Monte Carlo simulation algorithms, Phys. Rev. E 65 (2002) 066702.
[30] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087.
[31] U. Wolff, Collective Monte Carlo updating for spin systems, Phys. Rev. Lett. 62 (1989) 361.
[32] K. Hukushima and K. Nemoto, Exchange Monte Carlo method and application to spin glass simulations, J. Phys. Soc. Jpn. 65 (1996) 1604.
[33] O. K. T. Nguyen, P. H. Nguyen, N. T. Nguyen, C. T. Bach, H. D. Nguyen and G. H. Bach, Monte Carlo investigation for an Ising model with competitive magnetic interactions in the dominant ferromagnetic-interaction regime, Comm. Phys. 33 (2023) 205.
[34] K. Binder, Finite size scaling analysis of Ising model critical properties, Rep. Prog. Phys. 50 (1987) 783.
[35] D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, 3rd ed. (2009).
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


