Forthcoming

Thermodynamic properties of the first-order magnetic transition in the highly anisotropic 2D Blume-Capel model

Author affiliations

Authors

DOI:

https://doi.org/10.15625/0868-3166/22722

Keywords:

Blume-Capel model, random anisotropy, Phase transition, Monte Carlo simulation

Abstract

The effect of anisotropy on the first-order magnetic transition (FOMT) in the highly anisotropic systems, such as perovskite manganite oxides, is investigated using Monte Carlo simulations of a two-dimensional (2D) spin \(S = 1\) Blume-Capel model with random anisotropy. For sufficiently large values of anisotropy probability \(p\) and corresponding amplitude \(D\), the second-order magnetic transition (SOMT) transforms into the FOMT. The presence of the FOMT is indicated not only by a sharp discontinuity in the magnetic moment at the critical temperature \(T_C^{(1)}\), but also by significant changes in the internal energy and magnetic moment histograms. As the type of the phase transition changes, thermodynamic observables display distinctly different behavior around \(T_C^{(1)}\). A phase diagram illustrating the SOMT-to-FOMT crossover induced by random anisotropy in high-\(p\) regimes is successfully constructed.

Downloads

Download data is not yet available.

References

[1] S. Kumar, G. G. Riera, A. Arauzo, J. Hruby, S. Hill, L. Bogani et al., On-surface magnetocaloric effect for a van der Waals Gd 2D MOF grown on Si, J. Mater. Chem. A 12 (2024) 6269.

[2] X.-Q. Zheng and B.-G. Shen, The magnetic properties and magnetocaloric effects in binary R–T (R = Pr, Gd, Tb, Dy, Ho, Er, Tm; T = Ga, Ni, Co, Cu) intermetallic compounds, Chin. Phys. B 26 (2017) 027501.

[3] F. Guillou, A. K. Pathak, D. Paudyal, Y. Mudryk, F. Wilhelm, A. Rogalev et al., Non-hysteretic first-order phase transition with large latent heat and giant low-field magnetocaloric effect, Nat. Commun. 9 (2018) 2925.

[4] F. Guillou, G. Porcari, H. Yibole, N. van Dijk and E. Bruck, Taming the first-order transition in giant magnetocaloric materials, Adv. Mater. 26 (2014) 2671.

[5] L. Li, Y. Yuan, Y. Zhang, T. Namiki, K. Nishimura, R. Pottgen et al., Giant low field magnetocaloric effect and field-induced metamagnetic transition in TMZn, Appl. Phys. Lett. 107 (2015) 132401.

[6] G. H. Bach, O. K. T. Nguyen, C. V. Nguyen and C. T. Bach, First order magnetization process in polycrystalline perovskite manganite, Mater. Trans. 56 (2015) 1320.

[7] A. Biswas, N. A. Zarkevich, A. K. Pathak, O. Dolotko, I. Z. Hlova, A. V. Smirnov et al., First-order magnetic phase transition in Pr2In with negligible thermomagnetic hysteresis, Phys. Rev. B 101 (2020) 224402.

[8] S. Ghosh, T. Paramanik and I. Das, Magnetic phase transitions in R5Pd2 (R = Ho, Dy, Dy0.6Gd0.4) compounds, J. Supercond. Nov. Magn. 37 (2024) 231.

[9] D. Guo, L. M. Moreno-Ramirez, C. Romero-Muniz, Y. Zhang, J.-Y. Law, V. Franco et al., First- and second-order phase transitions in RE6Co2Ga (RE = Ho, Dy or Gd) cryogenic magnetocaloric materials, Sci. China Mater. 64 (2021) 2846.

[10] L. Xi, X. Zheng, Y. Gao, J. Xu, C. Liu, D. Wang et al., Giant low-field magnetocaloric effect of (Er,Y)Cr2Si2 compounds at ultra-low temperatures, Sci. China Mater. 66 (2023) 2039.

[11] S. Mellari, Introduction to magnetic refrigeration: magnetocaloric materials, Int. J. Air-Cond. Refrig. 31 (2023) 5.

[12] N. Chau, P. Q. Niem, H. N. Nhat, N. H. Luong and N. D. Tho, Influence of Cu substitution for Mn on the structure, magnetic, magnetocaloric and magnetoresistance properties of La0.7Sr0.3MnO3 perovskites, Phys. B: Condens. Matter 327 (2003) 214.

[13] Y. Essouda, H. T. Diep, M. Ellouze and E. Hlil, Magnetic properties of perovskites Pr0.9Sr0.1Mn0.93+Mn0.14+O3: Monte Carlo simulations and experiments, J. Magn. Magn. Mater. 588 (2023) 171485.

[14] Y. Essouda, H. T. Diep and M. Ellouze, First-order phase transition in perovskites Pr0.67Sr0.33MnO3 - magneto-caloric properties - effect of multi-spin interaction, J. Magn. Magn. Mater. 599 (2024) 172105.

[15] Y. Essouda, H. T. Diep and M. Ellouze, Phase transition and magneto-caloric properties of perovskites Pr0.55Sr0.45MnO3: Modeling versus experiments, Phys. A: Stat. Mech. Appl. 635 (2024) 129532.

[16] T.-L. Phan, Q. Tran, P. Thanh, P. Yen, T. Thanh and S. Yu, Critical behavior of La0.7Ca0.3Mn1−xNixO3 manganites exhibiting the crossover of first- and second-order phase transitions, Solid State Commun. 184 (2014) 40.

[17] T. L. Phan, T. D. Thanh, T. A. Ho, T. V. Manh, Q. T. Tran, P. Lampen et al., An effective route to control the magnetic-phase transition and magnetocaloric effect of La0.7Ca0.3MnO3 nanoparticles, IEEE Trans. Magn. 50 (2014) 1.

[18] M. Phan, V. Franco, N. Bingham, H. Srikanth, N. Hur and S. Yu, Tricritical point and critical exponents of La0.7Ca0.3−xSrxMnO3 (x = 0, 0.05, 0.1, 0.2, 0.25) single crystals, J. Alloys Compd. 508 (2010) 238.

[19] J. Mira, J. Rivas, F. Rivadulla, C. Vazquez-Vazquez and M. A. Lopez-Quintela, Change from first- to second-order magnetic phase transition in La2/3(Ca,Sr)1/3MnO3 perovskites, Phys. Rev. B 60 (1999) 2998.

[20] T.-L. Phan, P. Zhang, Y. D. Zhang, D. Grinting, T. D. Thanh and S. C. Yu, Rounding of a first-order magnetic phase transition in La0.7Ca0.3Mn0.85Ni0.15O3, J. Appl. Phys. 113 (2013) 17E150.

[21] M. Blume, Theory of the first-order magnetic phase change in UO2, Phys. Rev. 141 (1966) 517.

[22] H. Capel, On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting, Physica 32 (1966) 966.

[23] I. Puha and H. Diep, Random-bond and random-anisotropy effects in the phase diagram of the Blume–Capel model, J. Magn. Magn. Mater. 224 (2001) 85.

[24] E. Bezerra, M. G. da Silva and J. R. de Sousa, First-order transition of the spin-1 Blume–Capel model with random anisotropy using effective-field theory, Physica A 615 (2023) 128510.

[25] P. H. Nguyen, N. T. Nguyen, H. D. Nguyen, H. T. Nguyen, C. T. Bach and G. H. Bach, Random-anisotropy driven giant magnetic entropy change in first-order magnetic transition under external fields, J. Alloys Compd. 1017 (2025) 179001.

[26] O. K. Nguyen, P. H. Nguyen, L. D. Dang, C. T. Bach and G. H. Bach, Fluctuation inducing fractional magnetization behavior on the Shastry–Sutherland lattice, Phys. B: Condens. Matter 583 (2020) 412012.

[27] P. H. Nguyen, Q. M. Le, O. K. Nguyen, C. T. Bach and G. H. Bach, Effective field theory investigation for a disordered Ising model in the description of amorphous magnetic systems, J. Non-Cryst. Solids 643 (2024) 123165.

[28] G. H. Bach, P. H. Nguyen, Q. D. Nguyen and S. N. Bui, Random-anisotropy effects in the second-order phase transition of the 2D Blume–Capel model, Comm. Phys. 35 (2025).

[29] J. A. Plascak, A. M. Ferrenberg and D. P. Landau, Cluster hybrid Monte Carlo simulation algorithms, Phys. Rev. E 65 (2002) 066702.

[30] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087.

[31] U. Wolff, Collective Monte Carlo updating for spin systems, Phys. Rev. Lett. 62 (1989) 361.

[32] K. Hukushima and K. Nemoto, Exchange Monte Carlo method and application to spin glass simulations, J. Phys. Soc. Jpn. 65 (1996) 1604.

[33] O. K. T. Nguyen, P. H. Nguyen, N. T. Nguyen, C. T. Bach, H. D. Nguyen and G. H. Bach, Monte Carlo investigation for an Ising model with competitive magnetic interactions in the dominant ferromagnetic-interaction regime, Comm. Phys. 33 (2023) 205.

[34] K. Binder, Finite size scaling analysis of Ising model critical properties, Rep. Prog. Phys. 50 (1987) 783.

[35] D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, 3rd ed. (2009).

Downloads

Published

25-08-2025

How to Cite

[1]
P. Nguyen and B. Huong Giang, “Thermodynamic properties of the first-order magnetic transition in the highly anisotropic 2D Blume-Capel model”, Comm. Phys., vol. 35, no. 3, p. 203, Aug. 2025.

Issue

Section

Papers

Similar Articles

<< < 12 13 14 15 16 17 18 19 20 21 > >> 

You may also start an advanced similarity search for this article.