Application of the \(R\)-matrix method to determine the \((p,\gamma)\) cross-section
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/22929Keywords:
($p,\gamma$) reaction, calculable $R$-matrix, local potential, nonlocal potentialAbstract
We apply the calculable \(R\)-matrix method to determine the \(p,\Gamma\) cross section. We compare our cross-section calculation for the benchmark \(^{12}\)C\((p,\gamma)^{13}\)N reaction with results from the widely used FRESCO and RADCAP codes, which use the conventional Numerov method. Our calculations are in good agreement with these codes. Furthermore, we extend the calculable \(R\)-matrix method to accommodate non-local potentials.
Downloads
References
[1] C. R. Brune1 and B. Davids, Annu. Rev. Nucl. Part. Sci. 65 (2015) 87.
[2] C. E. Rolfs and W. S. Rodney, Cauldrons in the cosmos: Nuclear astrophysics, Chicago Press, Chicago, 1988.
[3] C. Bertulani and T. Kajino, Progress in Particle and Nuclear Physics 89 (2016) 56.
[4] P. Descouvemont, Front. Astron. Space Sci. 7 (2020) 9.
[5] P. Descouvemont and D. Baye, Reports on Progress in Physics 73 (2010) 036301.
[6] R. E. Azuma, E. Uberseder, E. C. Simpson, C. R. Brune, H. Costantini, R. J. de Boer, J. Görres, M. Heil, P. J.
LeBlanc, C. Ugalde and M. Wiescher, Phys. Rev. C 81 (2010) 045805.
[7] J. Huang, C. Bertulani and V. Guimarães, Atomic Data and Nuclear Data Tables 96 (2010) 824.
[8] Y. Xu, K. Takahashi, S. Goriely, M. Arnould, M. Ohta and H. Utsunomiya, Nuclear Physics A 918 (2013) 61.
[9] I. J. Thompson, Computer Physics Reports 7 (1988) 167.
[10] C. Bertulani, Computer Physics Communications 156 (2003) 123.
[11] T. Simos, Applied Numerical Mathematics 7 (1991) 201.
[12] P. Descouvemont, Computer Physics Communications 200 (2016) 199.
[13] D. Baye, Physics Reports 565 (2015) 1, The Lagrange-mesh method.
[14] N. H. Phuc, N. T. T. Phuc and D. C. Cuong, International Journal of Modern Physics E 30 (2021) 2150079.
[15] P. Fraser, K. Amos, S. Karataglidis, L. Canton, G. Pisent and J. P. Svenne, The European Physical Journal A 35
(2008) 69.
[16] Y. Tian, D. Y. Pang and Z.-y. Ma, Phys. Rev. C 97 (2018) 064615.
[17] N. L. Anh, N. H. Phuc, D. T. Khoa, L. H. Chien and N. T. T. Phuc, Nuclear Physics A 1006 (2021) 122078.
[18] F. Perey and B. Buck, Nuclear Physics 32 (1962) 353.
[19] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical
tables, vol. 55, Tenth Printing, US Government printing office, 1972.
[20] B. C, Nucl. Phys. 4 (1957) 503.
[21] B. Robson, Nuclear Physics A 132 (1969) 5.
[22] H. A. Bethe, Phys. Rev. 55 (1939) 434.
[23] N. Burtebaev, S. B. Igamov, R. J. Peterson, R. Yarmukhamedov and D. M. Zazulin, Phys. Rev. C 78 (2008)
035802.
[24] J. L. Vogl, Radiative capture of protons by 12 c and 13 c below 700 kev, PhD thesis, California Institute of
Technology, 1963.
[25] C. Rolfs and R. Azuma, Nuclear Physics A 227 (1974) 291.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Communications in Physics

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


