A New Solution to the Structure Equation in Noncommutative Spacetime
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/24/1/3606Keywords:
non-commutative geometry, gravity, general relativity, Kaluza-Klein theory, Cartan formalismAbstract
In this paper, starting from the common foundation of Connes' noncommutative geometry ( NCG)\cite{Connes1, Connes2, CoLo, Connes3}, various possible alternatives in the formulation of atheory of gravity in noncommutative spacetime are discussed indetails. The diversity in the final physical content of the theory is shown to be the consequence of the arbitrary choices in each construction steps. As an alternative in the last step, when the structure equations are to be solved, a minimal set of constraints on the torsion and connection is found to determine all the geometric notions in terms of the metric. In the Connes-Lott model of noncommutative spacetime, in order to keep the full spectrum of the discretized Kaluza-Klein theory \cite{VW2}, it is necessary to include the torsion in the generalized Einstein-Hilbert-Cartan action.Downloads
References
bibitem{Connes1} A.Connes, {it Noncommutative Geometry}, (Academic Press,
; A.Connes, {it Noncommutative Differential Geometry}, Publ.
I.H.E.S. {bf 62} (1986), 257; A.Connes, { it Noncommutative
Geometry and Physics} in {it Gravitation and Quantizations}, Les
Houches, Session LVII, (Elsevier Science B.V. 1995).
bibitem{Connes2} A.Connes, {it Essay on physics and noncommutative geometry},
in {it The interface of mathematics and particle physics}, Oxford
Univ.Press ( 1990), 9.
bibitem{CoLo} A.Connes and J.Lott Nucl.Phys.{bf B18} Suppl.(1990),
; A.Connes and J.Lott, {it The metric Aspect on Nonncommutative
Geometry}, in {it Proceedings of the 1991 Carges Summer School},
ed.J.Fr"ohlich et al.( Plenum, 1992).
bibitem{Connes3} A.Connes, {it Gravity coupled with matter and
the foundation of noncommutative geometry}, hep-th/8603053 (1996).
bibitem{Kast} D.Kastler, Commun.Math.Phys. {bf 166} (1995), 633.
bibitem{COQUE} R.Coquereaux, J.Geom.Phys. {bf 6} (1989),425.
bibitem{Madore} J.Madore, {it An Introduction to Noncommutative Geometry and its
Physical Applications}, ( LMS Lecture Notes 206, 1995).
bibitem{VW2} N.A.Viet and K.C.Wali, Intl. J. Modern Phys., {bf A11} (1996), 2403.
bibitem{Landi} G.Landi {it An Introduction to Noncommutative
Spaces and their Geometries},( Springer-Verlag 1997).
bibitem{CHAM}
A.H.Chamseddine, G.Felder and Fr"ohlich Comm.Math.Phys. {bf
},(1993), 205; A.H.Chamseddine, J.Fr"ohlich, O.Grandjean,
J.Math.Phys. {bf 36} (1995), 6255.
bibitem{WODZICKI} W.Kalau and M.Walze, J.Geom.Phys. {bf 16} (1995), 327.
bibitem{LVW} G.Landi, Nguyen Ai Viet, K.C.Wali Phys.Letters {bf B326} (1994), 32.
bibitem{VW1} Nguyen Ai Viet, K.C.Wali, Intl. J. Modern Phys., {bf A11} (1996), 533.
bibitem{VW3} Nguyen Ai Viet, K.C.Wali, {it Matter Fields in
Curved Space-Time} in {it Theoretical High-Energy Physics
MRST'2000}, ed. C.R.Hagen (2000), 27.
bibitem{CHIRAL} Nguyen Ai Viet and K.C.Wali {it Chiral spinors and Gauge Fields in curved
noncommutative space-time}, hep-th/0212064 ( to be published).
bibitem{V1} Nguyen Ai Viet {it Predictions of Noncommutative
space-time} in MRST'94 What Next? Exploring the Future of
High-Energy Physics, ed.K.R.Cudel et al,(World Scientific, 1994).
bibitem{V2} Nguyen Ai Viet, (To memory of E.Wigner) Heavy-Ion Phys.
{bf 1} (1995) 263.
bibitem{wheeler} Ch.W.Misner, K.S.Thorne and J.A.Wheeler {it Gravitation},
(W.H.Freeman and Company, New York, 1973).
bibitem{wald} R.M.Wald {it General Relativity}, (The University of Chicago Press,
Chicago and London, 1984).
bibitem{Naka} M.Nakahara, {it Geometry, Topology and Physics}, (
Institute of Physics Press, 1992).
bibitem{Eguchi} T.Eguchi, P.B.Gilkey and A.J.Hanson, {it
Gravitation, Gauge theories and Differential Geometry} Physics
Reports {bf 66} No 6 (1990).
bibitem{Dubois} M.Dubois-Viollete {it Lectures on graded
Differential algebras and Noncommutative Geometry} LPT-ORSAY
/100, qa/9912017 ( 1999).
bibitem{SITARZ} A.Sitarz Class.Quant.Grav. {bf 11} (1994)
bibitem{Klim} C.Klimcik, A.Pompos, V.Soucek, Lett.Math.Phys. {bf
} (1994), 259.
bibitem{CHINA} Bin Chen, Takesi Saito, Ke Wu,
Prog.Theor.Phys. {bf 92}, (1994), 881; G. Konisi, Takesi Saito,
Ke Wu, Prog.Theor.Phys. {bf 93}, (1995), 621.
bibitem{LiConKK} M.Dubois-Violette, R.Kerner, J.Madore,
J.Math.Phys. {bf 31} (1990), 316; J.Madore, Phys.Rev. {D41}
(1990), 3790; M.Dubois-Violette, J.Madore, T.Masson, J.Mourad,
J.Mourad, J.Math.Phys. {bf 37} (1996), 4089; J.Madore,
Class.Quant.Grav. {bf 13} (1996), 2109; J.Mourad,
Class.Quant.Grav. {bf 12} (1995), 965.
bibitem{KK} Th.Kaluza, Sitzuuza, Sitzungsber. Preuss. Akad. Wiss. Phys.
Math. Klasse 966 (1921);O.Klein, Z.F. Physik {bf 37} (1926) 895;
Y.Thirry, Comptes Rendus (Paris) {bf 226} (1948) 216.
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


