Conductivity in Half-filled Ionic Hubbard Model
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/24/3S2/5048Keywords:
static conductivity, ionic Hubbard model, coherent potential approximationAbstract
We calculate the temperature dependent conductivity in the half-filled ionic Hubbard model with an on-site Coulomb repulsion $U$ and an ionic energy $\Delta$ by mean of the coherent potential approximation. It is shown that for intermediate and large \(\Delta\) the largest conductivity occurs near the special value \(U = 2 \Delta\) at all temperatures \(T\), for a fixed \(\Delta\) the region of finite conductivity \([U_{c1}, U_{c2}]\) expands and its maximum decreases with increasing \(T\). Our results are in good agreement with those derived from the determinant quantum Monte Carlo simulation.Downloads
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


