Electrical and Optical Properties of the Hybrid TiO\(_{2}\) Nanocrystals - MEH-PPV Thin Films
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/19/4/6410Keywords:
Polymeric nanocomposite, photoluminescence, titanium dioxideAbstract
Recently, the conjugated polymer -- inorganic nanocomposites have been increasingly studied because of their enhanced optical and electronic properties as well as their potential application in developing optoelectronic devices. In this study nanocomposite materials thin films based on poly [2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and nanocrystalline TiO\(_{2}\) (nc-TiO\(_{2}\)) have been fabricated. The photoluminescence (PL) spectra of pure MEH-PPV and nanohybrid films have shown that the excitation at a 377 nm wavelength leads to the strongly enhanced performance in photoluminescent intensity due to the compositions of TiO\(_{2}\) component. Current-voltage (I-V) characteristics of multi-layer device Al//MEH-PPV:nc-TiO\(_{2}\)//PEDOT: PSS//ITO//glass were investigated. The results show that the hybrid MEH-PPV:nc-TiO\(_{2}\) materials with high concentrations of TiO\(_{2}\) (>25%) can be expected to be a good candidate for photovoltaic solar cell applications whereas those with lower concentrations of TiO\(_{2}\) are more suitable for organic light-emitting diodes (OLEDs).Downloads
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


