An Exactly Soluble Equation for the Stationary Probability Distribution in a Nonlinear System under the Influence of Two-telegraph Noise: Application to the Noise Reduction in a Raman Ring Laser
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/26/1/8352Keywords:
Raman ring laser, two telegraphs noises, noise reduction, nonlinear systemAbstract
In this paper, we will consider a model of nonlinear system with random telegraph noises and a Raman ring laser by modeling the laser pump light by a pregaussian process and find an exactly soluble equations for the stationary probability distribution of fluctuations in this nonlinear system under the influence of two-telegraph noise. In consequence, we will obtain the so-called noise reduction in this system: the Stokes output of this laser tends to the stabilize under the influence of the broad-band two-telegraph pregaussian pump and compare this results with that obtained in our previous paper (Cao Long Van, Doan Quoc Khoa, Opt. Quant. Electron. 43, 137 (2012)) for the case of one telegraph noise.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


