A Theoretical Study of Deflection of AFM Bimaterial Cantilevers Versus Irradiated Position
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/28/3/12673Keywords:
AFM, cantilever, bimaterial, theoretical, bio-sensingAbstract
The bimaterial cantilevers of atomic force microscopes have been widely used in chemical and bio-sensing. Due to the difference in the thermal expansion coefficients of the two layers, the cantilever is deflected and its deflections is dependent on the heat absorption from the ambient environment or the objects adsorbed on the cantilever surface. In this study, we theoretically examine the deflection of this cantilever considering different irradiated configurations of a laser beam and thicknesses of the coating layer. We show that the temperature difference between the end and the clamped position is maximized for an irradiation at the cantilever end and this difference reduces with increasing coating thickness. Especially, the maximal deflection is seen for an irradiation in the middle of the cantilever, around 0.6 of the cantilever length from the clamped position. The obtained results could help determining an irradiated configuration of laser and the coating thickness to optimize the sensitivity of the cantilevers in thermally sensing devices.
Downloads
References
N. V. Lavrik, M. J. Sepaniak and P. G. Datskos, Rev. Sci. Instrum. 75 (2004) 2229–2253.
S. Singamaneni, M. LeMieux, H. Lang, C. Gerber, Y. Lam, S. Zauscher, P. Datskos, N. Lavrik, H. Jiang, R. Naik, T. Bunning and V. Tsukruk, Adv. Mater. 20 (2008) 653–680.
A. Boisen, S. Dohn, S. S. Keller, S. Schmid and M. Tenje, Rep. Prog. Phys. 74 (2011) 036101.
M. F. Khan, N. Miriyala, J. Lee, M. Hassanpourfard, A. Kumar and T. Thundat, Appl. Phys. Lett. 108 (2016) 211906.
G. Zhang, L. Wu, C. Li, S. Wu and Q. Zhang, Rev. Sci. Instrum. 88 (2017) 075007.
W. Taweepreda, S. Tuaybut, S. Puangmanee and T. Khoa, Communications in Physics 24 (2014) .
J. Wang, M. J. Morton, C. T. Elliott, N. Karoonuthaisiri, L. Segatori and S. L. Biswal, Anal. Chem. 86 (2014) 1671–1678, PMID: 24417655.
H. Etayash, M. F. Khan, K. Kaur and T. Thundat, Nat. Commun. 7 (2016) 12947.
P. S. Jung and D. R. Yaniv, Scanning force microscope with beam tracking lens, 02 1994.
T. J. Yang, G. A. Lessard and S. R. Quake, Applied Physics Letters 76 (2000) 378–380.
N. D. Vy and T. Iida, Applied Physics Letters 102 (2013) 091101.
N. D. Vy and T. Iida, Applied Physics Express 9 (2016) 126601.
C. M. Hoang, N. D. Vy, L. T. Dat and T. Iida, Japanese Journal of Applied Physics 56 (2017) 06GK05.
C. M. Hoang, T. Iida, L. T. Dat, H. T. Huy and N. D. Vy, Optics Communications 403 (2017) 150 – 154.
J. R. Serrano, L. M. Phinney and J. W. Rogers, Int. J. Heat Mass Transfer 52 (2009) 2255–2264.
M. Toda, T. Ono, F. Liu and I. Voiculescu, Rev. Sci. Instrum. 81 (2010) 055104.
N. D. Vy, L. T. Dat and T. Iida, Applied Physics Letters 109 (2016) 054102.
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


