Quasi Three-parametric \(R\)-matrix and Quantum Supergroups \(GL_{p,q}(1/1)\) and \(U_{p,q}[\textit{gl}(1/1)]\)
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/29/4/14009Keywords:
Quantum supergroup, R-matrix, Drinfel'd-Jimbo deformation, Multi- parametric quantum deformationAbstract
An overparametrized (three-parametric) R-matrix satisfying a graded Yang-Baxter equation is introduced. It turns out that such an overparametrization is very helpful. Indeed, this R-matrix with one of the parameters being auxiliary, thus, reducible to a two-parametric R-matrix, allows the construction of quantum supergroups GLp,q(1/1) and Up,q[gl(1/1)] which, respectively, are two-parametric deformations of the supergroup GL(1/1) and the universal enveloping algebra U[gl(1/1)]. These two-parametric quantum deformations GLpq(1/1) and Upq[gl(1/1)], to our knowledge, are constructed for the first time via the present approach. The quantum deformation Up,q[gl(1/1)] obtained here is a true two-parametric deformation of Drinfel’d-Jimbo’s type, unlike some other one obtained previously elsewhere.
Downloads
References
G. Aad et al. (ATLAS collaboration), Phys. Lett. B716, 1 (2012) [arXiv:1207.7214 [hep-ex]].
S. Chatrchyan et al. (CMS collaboration), Phys. Lett. B716, 30 (2012) [arXiv:1207.7235 [hep-ex]].
Nguyen Anh Ky and Nguyen Thi Hong Van, “Was the Higgs boson discovered?”, Commun. Phys. 25,
(2015)[arXiv:1503.08630 [hep-ph]].
Ho Kim Quang and Pham Xuan Yem, “Elementary particles and their interactions: concepts and
phenomena”, Springer-Verlag, Berlin, 1998.
S. Willenbrock, “Symmetries of the standard model”, hep-ph/0410370.
M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, 030001 (2018).
L. Faddeev, N. Reshetikhin and L. Takhtajan, Algebra and Analys 1, 178 (1987).
Yu. Manin, “Quantum groups and non-commutative geometry””, Centre des Recherchers
Math ́ematiques, Montr ́eal, 1988.
S. Gomez, M. Ruiz-Altaba and G, Sierra, “Quantum groups in two-dimensional physics”, Cambridge
university press, Cambridge, 1996.
V. Drinfel’d, “Quantum groups”, J. Sov. Math., 41, 898 (1988); Zap. Nauch. Semin. 155, 18 (1986);
also in Proceedings of the International Congress of Mathematicians, Berkeley 1986, vol 1, The American
Mathematical Society, Providence, RI, 1987, pp. 798 - 820.
M. Jimbo, Lett. Math. Phys. 10, 63 (1985); ibit 11, 247 (1986).
Yu. Manin, Commun. Math. Phys. 123, 169 (1989).
P. Kulish and N. Reshetikhin, Lett. Math. Phys 18, 143 (1989).
J. Schmidke, S. Volos and B. Zumino, Z. Phys. C 48, 249 (1990).
M. Chaichian and P. Kulish, Phys. Lett. 234B, 72 (1990).
N. Reshetikhin, Lett. Math. Phys. 20, 331 (1990).
A. Schirrmacher, J. Wess and B. Zumino, Z. Phys. C 49, 317 (1991).
L. Dabrowski and L.-y. Wang, Phys. Lett. 266B, 51 (1991).
H. Hinrichsen and V. Rittenberg, Phys. Lett. 275B, 350 (1992) [hep-th/9110074].
Nguyen Anh Ky, J. Phys. A 29, 1541 (1996) [math.QA/9909067].
V. Dobrev and E. Tahri, Int. J. Mod. Phys. A 13, 4339 (1998).
Nguyen Anh Ky, J. Math. Phys. 41, 6487 (2000) [math.QA/0005122].
Nguyen Anh Ky, J. Phys. A 34, 7881 (2001) [math.QA/0104105].
Naihong Hu1, Marc Rosso, Honglian Zhang1, Commun. Math. Phys. 278, 453 (2008).
Yun Gao1, Naihong Hu, and Honglian Zhang, J. Math. Phys. 56, 011704 (2015).
Naihuan Jing1 and Honglian Zhang, J. Math. Phys. 57, 091702 (2016).
Nguyen Anh Ky and Nguyen Thi Hong Van, “A two-parametric deformation of U[sl(2)], its represen-
tations and complex “spin””, math.QA/0506539.
A. Kundu, Phys. Rev. Lett. 82, 3936 (1999).
A Jellal, Mod. Phys. Lett. A 17, 701 (2002).
A. Algin and B Deriven, J. Phys. A 38, 5945 (2005).
Nguyen Anh Ky, J. Math. Phys. 35, 2583 (1994) [hep-th/9305183].
Nguyen Anh Ky and N. Stoilova, J. Math. Phys. 36, 5979 (1995) [hep-th/9411098].
Downloads
Published
How to Cite
Issue
Section
License
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


